

N-(2-(4-HYDROXYPHENYL)ETHYL)-4-CHLOROCINNAMIDE: A NOVEL ANTAGONIST AT THE 1A/2B NMDA RECEPTOR SUBTYPE

Amir P. Tamiz, a Edward R. Whittemore, b Robert M. Schelkun, c Po-Wai Yuen, c Richard M. Woodward, b Sui-Xiong Cai, b Eckard Weber b and John F. W. Keana a,b,*

^aDepartment of Chemistry, University of Oregon, Eugene, Oregon 97403 ^bCoCensys Inc., 213 Technology Drive, Irvine, California 92618 ^cParke-Davis, 2800 Plymouth Road, Ann Arbor, Michigan 48106

Received 25 October 1997; accepted 3 December 1997

Abstract: A series of N-(2-phenethyl)cinnamides was synthesized and assayed for antagonism at three Nmethyl-D-asparate (NMDA) receptor subtypes (NR1A/2A-C). N-(2-(4-hydroxyphenyl)ethyl)-4-chlorocinnamide (6) was identified as a highly potent and selective antagonist of the NR1A/2B subtype. © 1998 Elsevier Science Ltd. All rights reserved.

Overstimulation of NMDA receptors play a central role in the process of excitotoxicity, a pathological phenomenon triggered during ischemic stroke, head trauma, and other neurodegenerative conditions. Inhibition of NMDA receptors attenuates excitotoxicity and is neuroprotective.² Unfortunately, many broad spectrum NMDA receptor antagonists have behavioral and neurotoxic side effects that limit their clinical utility.^{1,2} Studies at the molecular level indicate that NMDA receptors are heterooligomeric assemblies of at least two types of polypeptide subunits: NR1, found in eight isoforms, and NR2, found as four distinct subtypes (NR2A-NR2D).^{3,4} By designing subtype-selective NMDA receptor antagonists we reasoned that it may be possible to find neuroprotectants with improved side effect profiles. As part of a screening effort to identify novel subtypeselective NMDA antagonists, we found that N-(2-(4-hydroxyphenyl)ethyl)-4-chlorocinnamide (6) is a potent and selective antagonist at NR1A/2B receptors. In order to develop a structure-activity relationship for this class of antagonist, a series of substituted cinnamides were prepared and assayed for inhibition of three putative subtypes of NMDA receptors; NR1A in combination with either 2A, 2B, or 2C.

Cinnamide synthesis⁵ was achieved by three general methods. Method 1 was the reaction of a cinnamoyl chloride, prepared from the corresponding cinnamic acid treated with SOCl2, with a phenethylamine in the presence of triethylamine to yield 4-8 (55-70%). Method 2 was the direct reaction of 4-hydroxycinnamic acid with a phenylethylamine in the presence of 1,3-dicyclohexylcarbodiimide and 1-hydroxybenzotriazole in DMF to yield 9, 10, and 11 (80–95%). For the preparation of 11, the requisite β -cyano-4-chlorocinnamic acid was prepared by the general method of Dean and Blum.⁶ Method 3 is depicted in Scheme 1. Briefly, treatment of tyramine 1 with ethyl cyanoacetate resulted in the intermediate cyanoamide 2. Condensation of 2 with 4chlorobenzaldehyde in the presence of a catalytic amount of piperidine yielded 3 (28% overall).

Scheme 1

(a) NCCH₂CO₂Et, DMF, 110 °C, 4 h; (b) p-ClC₆H₄CHO, piperidine (cat.), EtOH, reflux 3 h

0960-894X/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved.

PII: S0960-894X(97)10215-3

Potencies for inhibition of NR1A/2A-C are listed in Table 1. The compounds generally exhibit selectivity for NR1A/2B over NR1A/2A and NR1A/2C. The exceptions are 5 and 7, which have weak activity at all three subtypes. The most potent compound at NR1A/2B in this series is 6, which possesses a 4-Cl substituent in the cinnamoyl moiety and a 4-OH in the phenylethylamine portion. Removal of the chlorine atom (4) reduces potency by fourfold. Removal of the hydroxyl group (5) renders the compound inactive, as does substituting a chlorine atom for the hydroxyl group (7). Moving the hydroxyl group of 6 from the para position to the meta position (8), or substituting the chlorine atom of 6 with a hydroxyl group (9) also reduces potency. Interestingly, amide 10, in which the position of the chlorine atom and the hydroxyl group are reversed, has a potency comparable to that of 6. This suggests that the molecules are able to interact with the receptor pocket from either orientation. Cyano substituted cinnamides 3 and 11 demonstrated reduced potencies relative to 6.

Table 1. Functional Antagonism of Substituted Cinnamides at NMDA Receptor Subtypes

$$\underset{R_{1}}{\overset{R_{2}}{\bigcap}}\underset{R_{3}}{\overset{O}{\bigcap}}\underset{N}{\overset{N}{\bigcap}}\underset{R_{6}}{\overset{R_{4}}{\bigcap}}$$

				_			IC ₅₀ (μM)		
_Compound #	R_1	R ₂	R ₃	R ₄	R ₅	1A/2A	1 A/2B	1A/2C	
4	Н	Н	Н	ОН	Н	>300	0.68 ± 0.07	>300	
5	Cl	H	Н	H	Н	>300	>300	>300	
6	Cl	H	Н	OH	Н	>300	0.17 ± 0.02	>300	
7	Cl	H	H	Cl	Н	160 ± 70	>300	>300	
8	Cl	Н	Н	H	OH	>300	7.4 ± 2.0	175 ± 39	
9	OH	Н	Н	OH	Н	>300	21 ± 5.5	200 ± 14	
10	OH	Н	Н	Cl	Н	>300	0.33 ± 0.07	>300	
3	Cl	Н	CN	OH	Н	78 ± 13	3.4 ± 1.6	105 ± 15	
11	Cl	CN	Н	ОН	Н	>300	9.0 ± 1.1	>300	

IC₅₀ values (±S.E.M) were determined by electrical assays in *Xenopus* oocytes expressing the NMDA receptor combinations.⁷ Values were examined from 3 oocytes for NR 1A/2B and 2 oocytes for the other subunits combinations.

Acknowledgment: Financial support to University of Oregon was provided by CoCensys Inc.

References and Notes:

- 1. Muir, K.; Lees, K. R. Stroke 1995, 26, 503.
- 2. Leeson, P. D.; Iversen, L. L. J. Med. Chem. 1994, 37, 4053.
- 3. Sugihara, H.; Moriyoshi, K.; Ishii, T.; Masu, M.; Nakanishi, S.; Biochem. Biophys. Res. Commun. 1992, 185, 826.
- 4. Monyer, H.; Sprengel, R.; Schoepfer, R.; Herb, A.; Higuchi, M.; Lomeli, H.; Burnashev, N.; Sakmann, B.; Seeburg, P. H. Science (Washington) 1992, 256, 1217.
- 5. The ¹H NMR spectra for all intermediates and final compounds were consistent with the assigned structures. All final compounds gave satisfactory C, H, N analyses.
- 6. Dean, W. D.; Blum, D. M. J. Org. Chem. 1993, 58, 7916.
- 7. Ilyin, V. I.; Whittemore, E. R.; Guastella, J.; Weber, E.; Woodward, R. M. Mol. Pharmacol. 1996, 50, 1541.